
Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 1 -

Maps, Hash Tables and Dictionaries

Chapter 9

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 2 -

Outline

Ø Maps

Ø Hashing

Ø Dictionaries

Ø Ordered Maps & Dictionaries
q  Iterative Algorithms: Case Study of Binary Search

² Loop Invariants

² Boundary Conditions

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 3 -

Maps

Ø A map models a searchable collection of key-value
entries

Ø  The main operations of a map are for searching,
inserting, and deleting items

Ø Multiple entries with the same key are not allowed

Ø Applications:
q address book

q student-record database

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 4 -

The Map ADT (net.datastructures.Map)
Ø Map ADT methods:

q get(k): if the map M has an entry with key k, return its associated
value; else, return null

q put(k, v): insert entry (k, v) into the map M; if key k is not already
in M, then return null; else, return old value associated with k

q remove(k): if the map M has an entry with key k, remove it from
M and return its associated value; else, return null

q size(), isEmpty()

q keys(): return an iterator over the keys in M
q values(): return an iterator of the values in M

q entries(): returns an iterator over the entries in M

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 5 -

Example
Operation Output M
isEmpty() true Ø
put(5,A) null (5,A)
put(7,B) null (5,A),(7,B)
put(2,C) null (5,A),(7,B),(2,C)
put(8,D) null (5,A),(7,B),(2,C),(8,D)
put(2,E) C (5,A),(7,B),(2,E),(8,D)
get(7) B (5,A),(7,B),(2,E),(8,D)
get(4) null (5,A),(7,B),(2,E),(8,D)
get(2) E (5,A),(7,B),(2,E),(8,D)
size() 4 (5,A),(7,B),(2,E),(8,D)
remove(5) A (7,B),(2,E),(8,D)
remove(2) E (7,B),(8,D)
get(2) null (7,B),(8,D)
isEmpty() false (7,B),(8,D)

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 6 -

Comparison with java.util.Map

Map ADT Methods java.util.Map Methods

 size() size()
 isEmpty() isEmpty()
 get(k) get(k)
 put(k,v) put(k,v)
 remove(k) remove(k)
 keys() keySet()
 values() values()
 entries() entrySet()

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 7 -

A Simple List-Based Map

Ø We could implement a map using an
unsorted list
q We store the entries of the map in a doubly-linked

list S, in arbitrary order

q S supports the node list ADT (Section 6.2)

trailer header nodes/positions

entries

9 c 6 b 5 a 8 d

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 8 -

The get(k) Algorithm

Algorithm get(k):
 B = S.positions() {B is an iterator of the positions in S}
 while B.hasNext() do
 p = B.next() // the next position in B

 if p.element().getKey() = k then
 return p.element().getValue()

 return null {there is no entry with key equal to k}

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 9 -

The put(k,v) Algorithm

Algorithm put(k,v):
B = S.positions()
while B.hasNext() do

 p = B.next()
 if p.element().getKey() = k then
 t = p.element().getValue()
 S.set(p,(k,v))
 return t {return the old value}

S.addLast((k,v))
n = n + 1 {increment variable storing number of entries}
return null {there was no previous entry with key equal to k}

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 10 -

The remove(k) Algorithm

Algorithm remove(k):
B =S.positions()

while B.hasNext() do
 p = B.next()

 if p.element().getKey() = k then

 t = p.element().getValue()

 S.remove(p)

 n = n – 1 {decrement number of entries}

 return t {return the removed value}

return null {there is no entry with key equal to k}

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 11 -

Performance of a List-Based Map

Ø Performance:
q put, get and remove take O(n) time since in the worst case

(the item is not found) we traverse the entire sequence to
look for an item with the given key

Ø  The unsorted list implementation is effective only for
small maps

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 12 -

Hash Tables

Ø A hash table is a data structure that can be used to
make map operations faster.

Ø While worst-case is still O(n), average case is typically O
(1).

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 13 -

Applications of Hash Tables

Ø  databases
Ø  compilers

Ø  browser caches

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 14 -

Hash Functions and Hash Tables
Ø A hash function h maps keys of a given type to integers

in a fixed interval [0, N - 1]

Ø  Example:
 h(x) = x mod N

is a hash function for integer keys

Ø  The integer h(x) is called the hash value of key x

Ø A hash table for a given key type consists of

q Hash function h

q Array (called table) of size N

Ø When implementing a map with a hash table, the goal
is to store item (k, o) at index i = h(k)

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 15 -

Example

Ø We design a hash table for
a map storing entries as
(SIN, Name), where SIN
(social insurance number) is
a nine-digit positive integer

Ø Our hash table uses an
array of size N = 10,000 and
the hash function
h(x) = last four digits of SIN x

Ø

Ø

Ø

Ø

0
1
2
3
4

9997
9998
9999

…

451-229-0004

981-101-0002

200-751-9998

025-612-0001

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 16 -

Hash Functions

Ø A hash function is usually specified as the composition of
two functions:

 Hash code:
 h1: keys è integers

 Compression function:
 h2: integers è [0, N - 1]

Ø  The hash code is applied first, and the compression
function is applied next on the result, i.e.,

 h(x) = h2(h1(x))

Ø  The goal of the hash function is to “disperse” the keys in
an apparently random way

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 17 -

Hash Codes
Ø Memory address:

q We reinterpret the memory address of the key object as an integer
(default hash code of all Java objects)

q Does not work well when copies of the same object may be stored at
different locations.

Ø  Integer cast:
q We reinterpret the bits of the key as an integer

q Suitable for keys of length less than or equal to the number of bits of
the integer type (e.g., byte, short, int and float in Java)

Ø Component sum:
q We partition the bits of the key into components of fixed length (e.g.,

16 or 32 bits) and we sum the components (ignoring overflows)

q Suitable for numeric keys of fixed length greater than or equal to the
number of bits of the integer type (e.g., long and double in Java)

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 18 -

Problems with Component Sum Hash Codes

Ø Hashing works when
q  the number of different common keys is small relative to the

hashing space (e.g., 232 for a 32-bit hash code).

q  the hash codes for common keys are well-distributed (do not
collide) in this space.

Ø Component Sum codes ignore the ordering of the
components.
q e.g., using 8-bit ASCII components, ‘stop’ and ‘pots’ yields the

same code.

Ø Since common keys are often anagrams of each other,
this is often a bad idea!

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 19 -

Polynomial Hash Codes
Ø  Polynomial accumulation:

q We partition the bits of the key into a sequence of components of fixed
length (e.g., 8, 16 or 32 bits)
 a0 a1 … an-1

q We evaluate the polynomial

 p(z) = a0 + a1 z + a2 z2 + … + an-1zn-1 at a fixed value z, ignoring overflows

q  Especially suitable for strings (e.g., the choice z = 33 gives at most 6
collisions on a set of 50,000 English words)

q  Polynomial p(z) can be evaluated in O(n) time using Horner’s rule:

² The following polynomials are successively computed, each from the previous
one in O(1) time

 p0(z) = an-1

 pi (z) = an-i-1 + zpi-1(z) (i = 1, 2, …, n -1)
q  We have p(z) = pn-1(z)

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 20 -

Compression Functions

Ø Division:
q h2 (y) = y mod N

q The size N of the hash table is usually chosen to be a prime (on
the assumption that the differences between hash keys y are
less likely to be multiples of primes).

Ø Multiply, Add and Divide (MAD):
q h2 (y) = [(ay + b) mod p] mod N, where

² p is a prime number greater than N

² a and b are integers chosen at random from the interval [0, p – 1],
with a > 0.

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 21 -

Collision Handling

Ø Collisions occur when different elements are mapped to
the same cell

Ø Separate Chaining:
q Let each cell in the table point to a linked list of entries that map

there

q Separate chaining is simple, but requires additional memory
outside the table

Ø

Ø
Ø

0
1
2
3
4 451-229-0004 981-101-0004

025-612-0001

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 22 -

Map Methods with Separate Chaining

Ø Delegate operations to a list-based map at each cell:

Algorithm get(k):
Output: The value associated with the key k in the map, or null if there is no

entry with key equal to k in the map
return A[h(k)].get(k) {delegate the get to the list-based map at A[h(k)]}

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 23 -

Map Methods with Separate Chaining

Ø Delegate operations to a list-based map at each cell:

Algorithm put(k,v):
Output: Store the new (key, value) pair. If there is an existing entry with key

equal to k, return the old value; otherwise, return null
t = A[h(k)].put(k,v) {delegate the put to the list-based map at A[h(k)]}

if t = null then {k is a new key}
 n = n + 1

return t

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 24 -

Map Methods with Separate Chaining

Ø Delegate operations to a list-based map at each cell:

Algorithm remove(k):
Output: The (removed) value associated with key k in the map, or null if there

 is no entry with key equal to k in the map
t = A[h(k)].remove(k) {delegate the remove to the list-based map at A[h(k)]}
if t ≠ null then {k was found}

 n = n - 1
return t

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 25 -

Linear Probing

Ø  Open addressing: the colliding
item is placed in a different cell of
the table

Ø  Linear probing handles collisions
by placing the colliding item in the
next (circularly) available table cell

Ø  Each table cell inspected is
referred to as a “probe”

Ø  Colliding items lump together, so
that future collisions cause a longer
sequence of probes

Ø  Example:
q  h(x) = x mod 13

q  Insert keys 18, 41, 22, 44,
59, 32, 31, 73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12
 41 18 44 59 32 22 31 73

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 26 -

Get with Linear Probing

Ø Consider a hash table A of
length N that uses linear
probing

Ø  get(k)
q We start at cell h(k)

q We probe consecutive
locations until one of the
following occurs
² An item with key k is found,

or

² An empty cell is found, or

² N cells have been
unsuccessfully probed

Algorithm get(k)
 i ç h(k)
 p ç 0
 repeat
 c ç A[i]
 if c = Ø	

	

 	

 	

return null
 else if c.key () = k
 return c.element()
 else
 i ç (i + 1) mod N

 p ç p + 1
until p = N
	

return null

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 27 -

Remove with Linear Probing

Ø  Suppose we receive a remove(44)
message.

Ø  What problem arises if we simply
remove the key = 44 entry?

Ø  Example:
q  h(x) = x mod 13

q  Insert keys 18, 41, 22, 44,
59, 32, 31, 73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12
 41 18 44 59 32 22 31 73

k h(k) i
18 5 5
41 2 2
22 9 9
44 5 6
59 7 7
32 6 8
31 5 10
73 8 11

✗
Ø
ê

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 28 -

Removal with Linear Probing
Ø  To address this problem, we introduce a special object, called

AVAILABLE , which replaces deleted elements

Ø  AVAILABLE has a null key

Ø  No changes to get(k) are required.
Algorithm get(k)

 i ç h(k)
 p ç 0
 repeat
 c ç A[i]
 if c = Ø	

	

 	

 	

return null
 else if c.key () = k
 return c.element()
 else
 i ç (i + 1) mod N

 p ç p + 1
until p = N
	

return null

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 29 -

Updates with Linear Probing

Ø  remove(k)
q We search for an entry with key k

q  If such an entry (k, o) is found, we replace it with the special item
AVAILABLE and we return element o

q  Else, we return null

Ø  put(k, o)
q We throw an exception if the table is full

q We start at cell h(k)

q We probe consecutive cells until one of the following occurs
² A cell i is found that is either empty or stores AVAILABLE, or

² N cells have been unsuccessfully probed

q We store entry (k, o) in cell i

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 30 -

Double Hashing

Ø  Double hashing uses a secondary hash function h’(k) in addition
to the primary hash function h(x).

Ø  Suppose that the primary hashing i=h(k) leads to a collision.

Ø  We then iteratively probe the locations
 (i + jh’(k)) mod N for j = 0, 1, … , N - 1

Ø  The secondary hash function h’(k) cannot have zero values

Ø  N is typically chosen to be prime.

Ø  Common choice of secondary hash function h’(k):
q  h’(k) = q - k mod q, where

² q < N

² q is a prime

Ø  The possible values for h’(k) are
 1, 2, … , q

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 31 -

Ø Consider a hash table
storing integer keys that
handles collision with
double hashing
q N = 13

q h(k) = k mod 13

q h’(k) = 7 - k mod 7

Ø  Insert keys 18, 41, 22,
44, 59, 32, 31, 73

Example of Double Hashing

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 73 22 44

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 32 -

End of Lecture

Feb 7, 2012

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 33 -

Performance of Hashing
Ø  In the worst case, searches, insertions and removals on a hash table

take O(n) time

Ø  The worst case occurs when all the keys inserted into the map collide
Ø  The load factor λ = n/N affects the performance of a hash table

q  For separate chaining, performance is typically good for λ < 0.9.

q  For open addressing , performance is typically good for λ < 0.5.

q  java.util.HashMap maintains λ < 0.75

Ø Separate chaining is typically as fast or faster than open
addressing.

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 34 -

Rehashing

Ø When the load factor λ exceeds threshold, the table must
be rehashed.
q A larger table is allocated (typically at least double the size).

q A new hash function is defined.

q All existing entries are copied to this new table using the new
hash function.

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 35 -

DICTIONARIES

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 36 -

Dictionary ADT
Ø  The dictionary ADT models a

searchable collection of key-
element entries

Ø  The main operations of a
dictionary are searching,
inserting, and deleting items

Ø  Multiple items with the same key
are allowed

Ø  Applications:
q  word-definition pairs

q  credit card authorizations

q  DNS mapping of host names
(e.g., datastructures.net) to
internet IP addresses (e.g.,
128.148.34.101)

Ø  Dictionary ADT methods:
q  get(k): if the dictionary has at

least one entry with key k,
returns one of them, else, returns
null

q  getAll(k): returns an iterable
collection of all entries with key k

q  put(k, v): inserts and returns the
entry (k, v)

q  remove(e): removes and returns
the entry e. Throws an exception
if the entry is not in the
dictionary.

q  entrySet(): returns an iterable
collection of the entries in the
dictionary

q  size(), isEmpty()

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 37 -

The Dictionary ADT in net.datastructures is slightly different

Ø Textbook:
q  get(k): if the dictionary has at least

one entry with key k, returns one
of them, else returns null

q  getAll(k): returns an iterable
collection of all entries with key k

q  put(k, v): inserts and returns the
entry (k, v)

q  remove(e): removes and returns
the entry e. Throws an exception if
the entry is not in the dictionary.

q  entrySet(): returns an iterable
collection of the entries in the
dictionary

q  size(), isEmpty()

Ø net.datastructures:
q  find(k): if the dictionary has at least

one entry with key k, returns one of
them else, returns null

q  findAll(k): returns an iterator of all
entries with key k

q  insert(k, o): inserts and returns the
entry (k, o)

q  remove(e): remove the entry e
from the dictionary

q  entries(): returns an iterator of the
entries in the dictionary

q  size(), isEmpty()

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 38 -

Dictionaries and Java

Ø Note: The java.util.Dictionary class actually implements
a map ADT.

Ø  There is no dictionary data structure in the Java
Collections Framework that supports multiple entries with
equal keys.

Ø  The textbook (Section 9.5.3) provides an implementation
of a Dictionary based upon a map of keys, each entry of
which supports a linked list of entries with the same key.

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 39 -

Example
Operation Output Dictionary
put(5,A) (5,A) (5,A)
put(7,B) (7,B) (5,A),(7,B)
put(2,C) (2,C) (5,A),(7,B),(2,C)
put(8,D) (8,D) (5,A),(7,B),(2,C),(8,D)
put(2,E) (2,E) (5,A),(7,B),(2,C),(8,D),(2,E)
get(7) (7,B) (5,A),(7,B),(2,C),(8,D),(2,E)
get(4) null (5,A),(7,B),(2,C),(8,D),(2,E)
get(2) (2,C) (5,A),(7,B),(2,C),(8,D),(2,E)
getAll(2) (2,C),(2,E) (5,A),(7,B),(2,C),(8,D),(2,E)
size() 5 (5,A),(7,B),(2,C),(8,D),(2,E)
remove(get(5)) (5,A) (7,B),(2,C),(8,D),(2,E)
get(5) null (7,B),(2,C),(8,D),(2,E)

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 40 -

Subtleties of remove(e)
Ø  remove(e) will remove an entry that matches e (i.e., has

the same (key, value) pair).

Ø  If the dictionary contains more than one entry with
identical (key, value) pairs, remove(e) will only remove
one.

Ø Example:
Operation Output Dictionary
e1 = put(2,C) (2,C) (5,A),(7,B),(2,C)
e2 = put(8,D) (8,D) (5,A),(7,B),(2,C),(8,D)
e3 = put(2,E) (2,E) (5,A),(7,B),(2,C),(8,D),(2,E)
remove(get(5)) (5,A) (7,B),(2,C),(8,D),(2,E)
remove(e3) (2,E) (7,B),(2,C),(8,D)
remove(e1) (2,C) (7,B),(8,D)

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 41 -

A List-Based Dictionary

Ø  A log file or audit trail is a dictionary implemented by means of an
unsorted sequence
q We store the items of the dictionary in a sequence (based on a doubly-

linked list or array), in arbitrary order

Ø  Performance:
q  insert takes O(1) time since we can insert the new item at the beginning or

at the end of the sequence
q  find and remove take O(n) time since in the worst case (the item is not

found) we traverse the entire sequence to look for an item with the given
key

Ø  The log file is effective only for dictionaries of small size or for
dictionaries on which insertions are the most common operations, while
searches and removals are rarely performed (e.g., historical record of
logins to a workstation)

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 42 -

Hash Table Implementation

Ø We can also create a hash-table dictionary
implementation.

Ø  If we use separate chaining to handle collisions, then
each operation can be delegated to a list-based
dictionary stored at each hash table cell.

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 43 -

The getAll and put Algorithms

Algorithm getAll(k)

Create an initially-empty list L

for e: D do

 if e.getKey() = k then

 L.addLast(e)

return L

Algorithm put(k,v)

Create a new entry e = (k,v)

S.addLast(e) {S is unordered}

return e

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 44 -

The remove Algorithm

Algorithm remove(e):

{ We don’t assume here that e stores its position in S }

B = S.positions()

while B.hasNext() do

 p = B.next()

 if p.element() = e then

 S.remove(p)

 return e

return null {there is no entry e in D}

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 45 -

Ordered Maps and Dictionaries
Ø  If keys obey a total order relation, can represent a map or

dictionary as an ordered search table stored in an array.

Ø  Can then support a fast find(k) using binary search.
q  at each step, the number of candidate items is halved

q  terminates after a logarithmic number of steps

q  Example: find(7)

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

m l h

m l h

m l h

l=m =h

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 46 -

Ordered Search Tables
Ø  Performance:

q  find takes O(log n) time, using binary search

q  insert takes O(n) time since in the worst case we have to shift n
items to make room for the new item

q  remove takes O(n) time since in the worst case we have to shift n
items to compact the items after the removal

Ø  A search table is effective only for dictionaries of small size or
for dictionaries on which searches are the most common
operations, while insertions and removals are rarely performed
(e.g., credit card authorizations)

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 47 -

Binary Search: A Case Study of an Iterative Algorithm

Ø  The algorithm for binary search that we just described is
an example of an iterative algorithm (note that we
could also implement binary search recursively).

Ø  Loop Invariant: An assertion about the current
program state useful for designing, analyzing and
proving the correctness of iterative algorithms.

Ø What is an appropriate loop invariant for our binary
search algorithm?
q Maintain a sublist.

q  If the key is contained in the original list, then the key is
contained in the sublist.

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 48 - 48

Definition of Assertions

An assertion is not a task for the algorithm to
perform.

It is only a comment that is added for the
benefit of the reader.

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 49 - 49

Specifying a Computational Problem

Other Examples of Assertions

Ø Preconditions: Any assumptions that must be
true about the input instance.

Ø Postconditions: The statement of what must
be true when the algorithm/program returns.

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 50 - 50

Iterative Algorithms

Take one step at a time

 towards the final destination

loop (done)

 take step

end loop

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 51 - 51

From the Pre-Conditions on the input instance
we must establish the loop invariant.

Establishing Loop Invariant

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 52 - 52

Maintain Loop Invariant

Ø Suppose that
q We start in a safe location (pre-condition)

q  If we are in a safe location, we always step
to another safe location (loop invariant)

Ø Can we be assured that the
computation will always be in a safe
location?

Ø  By what principle?

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 53 - 53

Maintain Loop Invariant
•  By Induction the computation will
always be in a safe location.

(0)

, ()

, () (1)

S

i S i

i S i S i

⇒ ⎫
⎪⎪⇒∀ ⇒⎬
⎪
⎪⇒∀ ⇒ + ⎭

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 54 - 54

Ending The Algorithm
Ø  Define Exit Condition

Ø  Termination: With sufficient progress,

 the exit condition will be met.

Ø  When we exit, we know
q  exit condition is true

q  loop invariant is true

 from these we must establish

 the post conditions.

Exit

Exit

0 km Exit

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 55 - 55

Definition of Correctness
<PreCond> & <code> è<PostCond>

If the input meets the preconditions,

then the output must meet the postconditions.

If the input does not meet the preconditions, then
nothing is required.

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 56 -

Define Problem: Binary Search

Ø PreConditions
q Key 25

q Sorted List

Ø PostConditions
q Find key in list (if there).

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 57 -

Define Loop Invariant

Ø Maintain a sublist.

Ø  If the key is contained in the original list, then the key is
contained in the sublist.

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 58 -

Define Step

Ø Cut sublist in half.

Ø Determine which half the key would be in.

Ø Keep that half.

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

mid

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 59 -

Define Step

Ø  It is faster not to check if the middle element is the key.

Ø Simply continue.

key 43

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 60 -

Make Progress

Ø  The size of the list becomes smaller.

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

79 km

75 km

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 61 -

Exit Condition

Ø  If the key is contained in the
original list,

 then the key is contained in the
sublist.

Ø  Sublist contains one element.

Exit

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

0 km

•  If the key is
contained in the
original list,

 then the key is at
this location.

key 25

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 62 -

If key not in original list

Ø  If the key is contained in the
original list,

 then the key is contained in the
sublist.

•  Loop invariant true,
even if the key is not
in the list.

•  If the key is contained in
the original list, then the
key is at this location.

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

key 24

•  Conclusion still solves the
problem.

 Simply check this one location
for the key.

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 63 -

Running Time

The sublist is of size n, n/2, n/4, n/8,…,1
Each step O(1) time.

Total = O(log n)

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 64 -

Running Time

Ø Binary search can interact poorly with the memory
hierarchy (i.e. caching), because of its random-access
nature.

Ø  It is common to abandon binary searching for linear
searching as soon as the size of the remaining span falls
below a small value such as 8 or 16 or even more in
recent computers.

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 65 -

<precondition>: A[1..n] is sorted in non-decreasing order
<postcondition>: If is in A[1..n], algorithm returns

1,
 its location

loop-invariant>: If is

BinarySea

in

rch(A[1..n],

whil

)

e
p q

key

key
q p

e

n

k y

<
>

= =

if []

els

2

1

return()

return("Key n

A[1..n], then

e

end
end
if []

end

 is in A[p..

ot in list")

q]
p qmid

q mid

p mi

key A m

key

id

key A p

e

d

p
lse

≤

+⎢ ⎥= ⎢ ⎥⎣ ⎦

=

= +

=

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 66 -

Simple, right?

Ø Although the concept is simple, binary search is
notoriously easy to get wrong.

Ø Why is this?

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 67 -

End of Lecture

Feb 9, 2012

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 68 -

Boundary Conditions

Ø  The basic idea behind binary search is easy to grasp.

Ø  It is then easy to write pseudocode that works for a
‘typical’ case.

Ø Unfortunately, it is equally easy to write pseudocode that
fails on the boundary conditions.

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 69 -

1

if []

else

end

q mid

p

key A mid

mid

=

=

≤

+

Boundary Conditions

1

if []

else

end

q mid

p

key A mid

mid

=

=

<

+or

What condition will break the loop invariant?

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 70 -

Boundary Conditions

key 36

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

mid

sC eod lek cey t A[m rige hid] t lf: ha≥ →

Bug!!

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 71 -

1

if []

else

end

q mid

p

key A mid

mid

=

=

≤

+

Boundary Conditions

1

if []

else

end

q mid

p

key A mid

mid

=

=

<

+

if < []

else

end

1q mid

p

key A mid

mid

= −

=

OK OK Not OK!!

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 72 -

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

Boundary Conditions

mid
2
+⎢ ⎥= ⎢ ⎥⎣ ⎦
p q mid

2
+⎡ ⎤= ⎢ ⎥⎢ ⎥
p q

or

Shouldn’t matter, right? Select mid
2

p q+⎡ ⎤= ⎢ ⎥⎢ ⎥

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 73 -

6 74

Boundary Conditions

key 25

95 91 88 83 72 60 53 51 49 43 36 25 21 21 18 13 5 3

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

mid
Select mid

2
p q+⎡ ⎤= ⎢ ⎥⎢ ⎥

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 74 -

25 18 74

Boundary Conditions

key 25

95 91 88 83 72 60 53 51 49 43 36 21 21 13 6 5 3

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

mid
Select mid

2
p q+⎡ ⎤= ⎢ ⎥⎢ ⎥

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 75 -

25 13 74

Boundary Conditions

key 25

95 91 88 83 72 60 53 51 49 43 36 21 21 18 6 5 3

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

• Another bug!

No progress
toward goal:

Loops Forever!

mid
Select mid

2
p q+⎡ ⎤= ⎢ ⎥⎢ ⎥

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 76 -

if [

mid

]
2

1
else

end

key A mi

p q

q mid

p mid

d

+⎢ ⎥= ⎢ ⎥⎣ ⎦

= +

≤
=

Boundary Conditions

if [

mid

]
2

1
else

end

key A mi

p q

q mid

p mid

d

+⎡ ⎤= ⎢ ⎥⎢ ⎥

= +

≤
=

if < [

mid
2

1
]

else

end

key A mid

p q

q mid

p mid

+⎡ ⎤= ⎢ ⎥⎢ ⎥

= −

=

OK OK Not OK!!

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 77 -

if [

mid

]
2

1
else

end

key A mi

p q

q mid

p mid

d

+⎢ ⎥= ⎢ ⎥⎣ ⎦

= +

≤
=

Getting it Right

Ø How many
possible
algorithms?

Ø How many
correct
algorithms?

Ø Probability of
guessing
correctly?

midr
2

o ? p q+⎡ ⎤= ⎢ ⎥⎢ ⎥

if < [or ?]key A mid

else
o

end

1r q mid

p mid

= −

=

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 78 -

BinarySearch(A[1..n],key)
<precondition>: A[1..n] is sorted in non-decreasing order
<postcondition>: If key is in A[1..n], algorithm returns its location
p = 1, q = n
while q ! p

< loop-invariant>: If key is in A[1..n], then key is in A[p..q]

mid =
p + q

2

"

#
"
"

$

%
$
$

if key <A[mid]
q = mid & 1

else if key > A[mid]
p = mid + 1

else
return(mid)

end
end
return("Key not in list")

Alternative Algorithm: Less Efficient but More Clear

ΘStill (log), but with slightly larger constant.n

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 79 -

Moral

Ø Use the loop invariant method to think about iterative
algorithms.

Ø Be careful with your definitions.

Ø Be sure that the loop invariant is always maintained.

Ø Be sure progress is always made.

Ø Having checked the ‘typical’ cases, pay particular
attention to boundary conditions and the end game.

Ø Sometimes it is worth paying a little in efficiency for clear,
correct code.

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 80 -

Ø A volunteer, please.

Card Trick

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 81 -

Pick a Card

Done

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 82 -

Loop Invariant:
The selected card is one

of these.

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 83 -

Which

column?

left

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 84 -

Loop Invariant:
The selected card is one

of these.

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 85 -

Selected column is placed
in the middle

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 86 -

I will rearrange the cards

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 87 -

Relax Loop Invariant:
I will remember the same

about each column.

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 88 -

Which

column?

right

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 89 -

Loop Invariant:
The selected card is one

of these.

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 90 -

Selected column is placed
in the middle

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 91 -

I will rearrange the cards

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 92 -

Which

column?

left

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 93 -

Loop Invariant:
The selected card is one

of these.

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 94 -

Selected column is placed
in the middle

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 95 -

Here is your
card.

Wow!

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 96 -

Ternary Search

Ø  Loop Invariant: selected card in central subset of
cards

Ø How many iterations are required to guarantee success?

1Size of subset = / 3

where
total number of cards

iteration index

in

n
i

−⎡ ⎤⎢ ⎥

=
=

Last Updated: 12-02-28 9:11 AM
CSE 2011
Prof. J. Elder - 97 -

Summary: Learning Outcomes
Ø  Maps

q  ADT

q  What are they good for?

q  Naïve implementation – running times

Ø  Hashing
q  Running time

q  Types of hashing

Ø  Dictionaries
q  ADT

q  What are they good for?

Ø  Ordered Maps & Dictionaries
q  Iterative Algorithms: Case Study of Binary Search

²  Loop Invariants

²  Boundary Conditions

