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Maps, Hash Tables and Dictionaries 

Chapter 9 
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Outline 

Ø Maps 

Ø Hashing 

Ø Dictionaries 

Ø Ordered Maps & Dictionaries 
q  Iterative Algorithms:  Case Study of Binary Search 

² Loop Invariants 

² Boundary Conditions 
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Maps 

Ø A map models a searchable collection of key-value 
entries 

Ø  The main operations of a map are for searching, 
inserting, and deleting items 

Ø Multiple entries with the same key are not allowed 

Ø Applications: 
q address book 

q student-record database 
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The Map ADT (net.datastructures.Map)  
Ø Map ADT methods: 

q get(k): if the map M has an entry with key k, return its associated 
value; else, return null  

q put(k, v): insert entry (k, v) into the map M; if key k is not already 
in M, then return null; else, return old value associated with k 

q remove(k): if the map M has an entry with key k, remove it from 
M and return its associated value; else, return null  

q size(), isEmpty() 

q keys(): return an iterator over the keys in M 
q values(): return an iterator of the values in M 

q entries():  returns an iterator over the entries in M 
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Example 
Operation  Output   M 
isEmpty()  true   Ø 
put(5,A)   null   (5,A)   
put(7,B)   null   (5,A),(7,B)   
put(2,C)   null   (5,A),(7,B),(2,C)   
put(8,D)   null   (5,A),(7,B),(2,C),(8,D)   
put(2,E)   C   (5,A),(7,B),(2,E),(8,D)   
get(7)   B   (5,A),(7,B),(2,E),(8,D)   
get(4)   null   (5,A),(7,B),(2,E),(8,D)   
get(2)   E   (5,A),(7,B),(2,E),(8,D)   
size()   4   (5,A),(7,B),(2,E),(8,D)   
remove(5)  A   (7,B),(2,E),(8,D)   
remove(2)  E   (7,B),(8,D)   
get(2)   null   (7,B),(8,D)   
isEmpty()  false   (7,B),(8,D) 
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Comparison with java.util.Map 

Map ADT Methods   java.util.Map Methods
  

 size()     size()   
 isEmpty()     isEmpty()   
 get(k)     get(k)   
 put(k,v)     put(k,v)   
 remove(k)     remove(k)   
 keys()     keySet()   
 values()     values() 
 entries()     entrySet()   
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A Simple List-Based Map 

Ø We could implement a map using an 
unsorted list  
q We store the entries of the map in a doubly-linked 

list S, in arbitrary order 

q S supports the node list ADT (Section 6.2) 

trailer header nodes/positions 

entries 

9 c 6 b 5 a 8 d 



Last Updated:  12-02-28 9:11 AM 
CSE 2011 
Prof. J. Elder - 8 - 

The get(k) Algorithm 

Algorithm get(k): 
 B = S.positions() {B is an iterator of the positions in S} 
 while B.hasNext() do 
  p = B.next()  // the next position in B 

  if p.element().getKey() = k then 
   return p.element().getValue() 

 return null {there is no entry with key equal to k} 
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The put(k,v) Algorithm 

Algorithm put(k,v):      
B  = S.positions()    
while B.hasNext() do   

 p = B.next()    
 if p.element().getKey() = k  then    
  t = p.element().getValue()   
  S.set(p,(k,v))   
  return t {return the old value}   

S.addLast((k,v))    
n = n + 1  {increment variable storing number of entries} 
return null  {there was no previous entry with key equal to k} 
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The remove(k) Algorithm 

Algorithm remove(k):    
B =S.positions()    

while B.hasNext() do   
 p = B.next()    

 if p.element().getKey() = k  then    

  t = p.element().getValue()    

  S.remove(p)    

  n = n – 1  {decrement number of entries} 

  return t  {return the removed value} 

return null   {there is no entry with key equal to k} 
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Performance of a List-Based Map 

Ø Performance: 
q put, get and remove take O(n) time since in the worst case 

(the item is not found) we traverse the entire sequence to 
look for an item with the given key 

Ø  The unsorted list implementation is effective only for 
small maps  
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Hash Tables 

Ø A hash table is a data structure that can be used to 
make map operations faster. 

Ø While worst-case is still O(n), average case is typically O
(1). 
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Applications of Hash Tables 

Ø  databases 
Ø  compilers 

Ø  browser caches 
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Hash Functions and Hash Tables  
Ø A hash function h maps keys of a given type to integers 

in a fixed interval [0, N - 1] 

Ø  Example: 
 h(x) = x mod N 

is a hash function for integer keys 

Ø  The integer h(x) is called the hash value of key x 

Ø A hash table for a given key type consists of 

q Hash function h 

q Array (called table) of size N 

Ø When implementing a map with a hash table, the goal 
is to store item (k, o) at index i = h(k) 
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Example 

Ø We design a hash table for 
a map storing entries as 
(SIN, Name), where SIN 
(social insurance number) is 
a nine-digit positive integer 

Ø Our hash table uses an 
array of size N = 10,000 and 
the hash function 
h(x) = last four digits of SIN x 

Ø 

Ø 

Ø 

Ø 

0 
1 
2 
3 
4 

9997 
9998 
9999 

…
 

451-229-0004 

981-101-0002 

200-751-9998 

025-612-0001 
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Hash Functions  

Ø A hash function is usually specified as the composition of 
two functions: 

 Hash code: 
  h1: keys è integers 

 Compression function: 
  h2: integers è [0, N - 1] 

Ø  The hash code is applied first, and the compression 
function is applied next on the result, i.e.,  

 h(x) = h2(h1(x)) 

Ø  The goal of the hash function is to  “disperse” the keys in 
an apparently random way 
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Hash Codes  
Ø Memory address: 

q We reinterpret the memory address of the key object as an integer 
(default hash code of all Java objects) 

q Does not work well when copies of the same object may be stored at 
different locations. 

Ø  Integer cast: 
q We reinterpret the bits of the key as an integer 

q Suitable for keys of length less than or equal to the number of bits of 
the integer type (e.g., byte, short, int and float in Java) 

Ø Component sum: 
q We partition the bits of the key into components of fixed length (e.g., 

16 or 32 bits) and we sum the components (ignoring overflows) 

q Suitable for numeric keys of fixed length greater than or equal to the 
number of bits of the integer type (e.g., long and double in Java) 
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Problems with Component Sum Hash Codes 

Ø Hashing works when 
q  the number of different common keys is small relative to the 

hashing space (e.g., 232 for a 32-bit hash code). 

q  the hash codes for common keys are well-distributed (do not 
collide) in this space. 

Ø Component Sum codes ignore the ordering of the 
components. 
q e.g., using 8-bit ASCII components, ‘stop’ and ‘pots’ yields the 

same code. 

Ø Since common keys are often anagrams of each other, 
this is often a bad idea! 
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Polynomial Hash Codes 
Ø  Polynomial accumulation: 

q We partition the bits of the key into a sequence of components of fixed 
length (e.g., 8, 16 or 32 bits) 
   a0 a1 … an-1 

q We evaluate the polynomial 

 p(z) = a0 + a1 z  + a2 z2 + … + an-1zn-1 at a fixed value z, ignoring overflows 

q  Especially suitable for strings (e.g., the choice z = 33 gives at most 6 
collisions on a set of 50,000 English words) 

q  Polynomial p(z) can be evaluated in O(n) time using Horner’s rule: 

² The following polynomials are successively computed, each from the previous 
one in O(1) time 

   p0(z) = an-1 

   pi (z) = an-i-1 + zpi-1(z)  (i = 1, 2, …, n -1) 
q  We have p(z) = pn-1(z)  
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Compression Functions  

Ø Division: 
q h2 (y) = y mod N 

q The size N of the hash table is usually chosen to be a prime (on 
the assumption that the differences between hash keys y are 
less likely to be multiples of primes). 

Ø Multiply, Add and Divide (MAD): 
q h2 (y) = [(ay + b) mod p] mod N, where 

² p is a prime number greater than N 

² a and b are integers chosen at random from the interval [0, p – 1], 
with a > 0. 
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Collision Handling  

Ø Collisions occur when different elements are mapped to 
the same cell 

Ø Separate Chaining:   
q Let each cell in the table point to a linked list of entries that map 

there 

q Separate chaining is simple, but requires additional memory 
outside the table 

Ø 

Ø 
Ø 

0 
1 
2 
3 
4 451-229-0004 981-101-0004 

025-612-0001 
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Map Methods with Separate Chaining  

Ø Delegate operations to a list-based map at each cell: 
 

Algorithm get(k):    
Output: The value associated with the key k in the map, or null if there is no 

entry with key equal to k in the map   
return A[h(k)].get(k)  {delegate the get to the list-based map at A[h(k)]} 
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Map Methods with Separate Chaining  

Ø Delegate operations to a list-based map at each cell: 
 

Algorithm put(k,v):    
Output: Store the new (key, value) pair.  If there is an existing entry with key 

equal to k, return the old value; otherwise, return null  
t = A[h(k)].put(k,v)  {delegate the put to the list-based map at A[h(k)]} 

if t = null then   {k is a new key} 
 n = n + 1   

return t 
  



Last Updated:  12-02-28 9:11 AM 
CSE 2011 
Prof. J. Elder - 24 - 

Map Methods with Separate Chaining  

Ø Delegate operations to a list-based map at each cell: 
 

  

Algorithm remove(k):    
Output: The (removed) value associated with key k in the map, or null if there 

 is no entry with key equal to k in the map   
t = A[h(k)].remove(k)       {delegate the remove to the list-based map at A[h(k)]} 
if t ≠ null then            {k was found} 

 n = n - 1   
return t 
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Linear Probing 

Ø  Open addressing: the colliding 
item is placed in a different cell of 
the table 

Ø  Linear probing handles collisions 
by placing the colliding item in the 
next (circularly) available table cell 

Ø  Each table cell inspected is 
referred to as a “probe” 

Ø  Colliding items lump together, so 
that future collisions cause a longer 
sequence of probes 

Ø  Example: 
q  h(x) = x mod 13 

q  Insert keys 18, 41, 22, 44, 
59, 32, 31, 73, in this order 

                           
0 1 2 3 4 5 6 7 8 9 10 11 12 
    41     18 44 59 32 22 31 73   
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Get with Linear Probing 

Ø Consider a hash table A of 
length N that uses linear 
probing 

Ø  get(k) 
q We start at cell h(k)  

q We probe consecutive 
locations until one of the 
following occurs 
² An item with key k is found, 

or 

² An empty cell is found, or 

² N cells have been 
unsuccessfully probed  

Algorithm get(k)   
 i ç h(k) 
 p ç 0 
 repeat 
  c ç A[i] 
  if c = Ø	

	
 	
 	
return null 
   else if c.key () = k 
   return c.element() 
  else 
   i ç (i + 1) mod N 

  p ç p + 1 
until   p = N 
	
return null 
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Remove with Linear Probing 

Ø  Suppose we receive a remove(44) 
message. 

Ø  What problem arises if we simply 
remove the key = 44 entry? 

Ø  Example: 
q  h(x) = x mod 13 

q  Insert keys 18, 41, 22, 44, 
59, 32, 31, 73, in this order 

                           
0 1 2 3 4 5 6 7 8 9 10 11 12 
    41     18 44 59 32 22 31 73   

k h(k) i 
18 5 5 
41 2 2 
22 9 9 
44 5 6 
59 7 7 
32 6 8 
31 5 10 
73 8 11 

✗ 
Ø 
ê 
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Removal with Linear Probing 
Ø  To address this problem, we introduce a special object, called 

AVAILABLE , which replaces deleted elements 

Ø  AVAILABLE has a null key 

Ø  No changes to get(k) are required. 
Algorithm get(k)   

 i ç h(k) 
 p ç 0 
 repeat 
  c ç A[i] 
  if c = Ø	

	
 	
 	
return null 
   else if c.key () = k 
   return c.element() 
  else 
   i ç (i + 1) mod N 

  p ç p + 1 
until   p = N 
	
return null 



Last Updated:  12-02-28 9:11 AM 
CSE 2011 
Prof. J. Elder - 29 - 

Updates with Linear Probing 

Ø  remove(k) 
q We search for an entry with key k  

q  If such an entry (k, o) is found, we replace it with the special item 
AVAILABLE and we return element o 

q  Else, we return null 

Ø  put(k, o) 
q We throw an exception if the table is full 

q We start at cell h(k)  

q We probe consecutive cells until one of the following occurs 
² A cell i is found that is either empty or stores AVAILABLE, or 

² N cells have been unsuccessfully probed 

q We store entry (k, o) in cell i 
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Double Hashing 

Ø  Double hashing uses a secondary hash function h’(k) in addition 
to the primary hash function h(x).  

Ø  Suppose that the primary hashing i=h(k) leads to a collision. 

Ø  We then iteratively probe the locations 
 (i + jh’(k)) mod N  for j = 0,  1, … , N - 1 

Ø  The secondary hash function h’(k) cannot have zero values 

Ø  N is typically chosen to be prime. 

Ø  Common choice of secondary hash function h’(k):   
q  h’(k) = q - k mod q, where 

² q < N 

² q is a prime 

Ø  The possible values for h’(k) are 
  1, 2, … , q 
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Ø Consider a hash table 
storing integer keys that 
handles collision with 
double hashing 
q N = 13  

q h(k) = k mod 13  

q h’(k) = 7 - k mod 7  

Ø  Insert keys 18, 41, 22, 
44, 59, 32, 31, 73 

Example of Double Hashing 

                           
0 1 2 3 4 5 6 7 8 9 10 11 12 

31   41     18 32 59 73 22 44   
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End of Lecture 

Feb 7, 2012 
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Performance of Hashing 
Ø  In the worst case, searches, insertions and removals on a hash table 

take O(n) time 

Ø  The worst case occurs when all the keys inserted into the map collide 
Ø  The load factor λ = n/N affects the performance of a hash table 

q  For separate chaining, performance is typically good for λ < 0.9. 

q  For open addressing , performance is typically good for λ < 0.5. 

q  java.util.HashMap maintains λ < 0.75   

Ø Separate chaining is typically as fast or faster than open 
addressing. 
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Rehashing 

Ø When the load factor λ exceeds threshold, the table must 
be rehashed. 
q A larger table is allocated (typically at least double the size). 

q A new hash function is defined. 

q All existing entries are copied to this new table using the new 
hash function. 
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DICTIONARIES 



Last Updated:  12-02-28 9:11 AM 
CSE 2011 
Prof. J. Elder - 36 - 

Dictionary ADT 
Ø  The dictionary ADT models a 

searchable collection of key-
element entries 

Ø  The main operations of a 
dictionary are searching, 
inserting, and deleting items 

Ø  Multiple items with the same key 
are allowed 

Ø  Applications: 
q  word-definition pairs 

q  credit card authorizations 

q  DNS mapping of host names 
(e.g., datastructures.net) to 
internet IP addresses (e.g., 
128.148.34.101) 

Ø  Dictionary ADT methods: 
q  get(k): if the dictionary has at 

least one entry with key k, 
returns one of them, else, returns 
null  

q  getAll(k): returns an iterable 
collection of all entries with key k 

q  put(k, v): inserts and returns the 
entry (k, v)  

q  remove(e): removes and returns 
the entry e. Throws an exception 
if the entry is not in the 
dictionary. 

q  entrySet(): returns an iterable 
collection of the entries in the 
dictionary 

q  size(), isEmpty() 
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The Dictionary ADT in net.datastructures is slightly different 

Ø Textbook: 
q  get(k): if the dictionary has at least 

one entry with key k, returns one 
of them, else returns null  

q  getAll(k): returns an iterable 
collection of all entries with key k 

q  put(k, v): inserts and returns the 
entry (k, v)  

q  remove(e): removes and returns 
the entry e. Throws an exception if 
the entry is not in the dictionary. 

q  entrySet(): returns an iterable 
collection of the entries in the 
dictionary 

q  size(), isEmpty() 

Ø net.datastructures: 
q  find(k): if the dictionary has at least 

one entry with key k, returns one of 
them else, returns null  

q  findAll(k): returns an iterator of all 
entries with key k 

q  insert(k, o): inserts and returns the 
entry (k, o)  

q  remove(e): remove the entry e 
from the dictionary 

q  entries(): returns an iterator of the 
entries in the dictionary 

q  size(), isEmpty() 
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Dictionaries and Java 

Ø Note:  The java.util.Dictionary class actually implements 
a map ADT. 

Ø  There is no dictionary data structure in the Java 
Collections Framework that supports multiple entries with 
equal keys. 

Ø  The textbook (Section 9.5.3) provides an implementation 
of a Dictionary based upon a map of keys, each entry of 
which supports a linked list of entries with the same key. 
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Example 
Operation   Output  Dictionary   
put(5,A)   (5,A)   (5,A)   
put(7,B)   (7,B)   (5,A),(7,B)   
put(2,C)   (2,C)   (5,A),(7,B),(2,C)  
put(8,D)   (8,D)   (5,A),(7,B),(2,C),(8,D) 
put(2,E)   (2,E)   (5,A),(7,B),(2,C),(8,D),(2,E) 
get(7)    (7,B)   (5,A),(7,B),(2,C),(8,D),(2,E) 
get(4)    null   (5,A),(7,B),(2,C),(8,D),(2,E) 
get(2)    (2,C)   (5,A),(7,B),(2,C),(8,D),(2,E) 
getAll(2)   (2,C),(2,E)  (5,A),(7,B),(2,C),(8,D),(2,E) 
size()    5   (5,A),(7,B),(2,C),(8,D),(2,E) 
remove(get(5))   (5,A)   (7,B),(2,C),(8,D),(2,E) 
get(5)    null   (7,B),(2,C),(8,D),(2,E) 
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Subtleties of remove(e) 
Ø  remove(e) will remove an entry that matches e (i.e., has 

the same (key, value) pair). 

Ø  If the dictionary contains more than one entry with 
identical (key, value) pairs, remove(e) will only remove 
one. 

Ø Example: 
Operation   Output   Dictionary   
e1 = put(2,C)  (2,C)   (5,A),(7,B),(2,C)   
e2 = put(8,D)  (8,D)   (5,A),(7,B),(2,C),(8,D) 
e3 = put(2,E)  (2,E)   (5,A),(7,B),(2,C),(8,D),(2,E) 
remove(get(5))  (5,A)   (7,B),(2,C),(8,D),(2,E) 
remove(e3)   (2,E)   (7,B),(2,C),(8,D) 
remove(e1)   (2,C)   (7,B),(8,D) 
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A List-Based Dictionary 

Ø  A log file or audit trail is a dictionary implemented by means of an 
unsorted sequence 
q We store the items of the dictionary in a sequence (based on a doubly-

linked list or array), in arbitrary order 

Ø  Performance: 
q  insert takes O(1) time since we can insert the new item at the beginning or 

at the end of the sequence 
q  find and remove take O(n) time since in the worst case (the item is not 

found) we traverse the entire sequence to look for an item with the given 
key 

Ø  The log file is effective only for dictionaries of small size or for 
dictionaries on which insertions are the most common operations, while 
searches and removals are rarely performed (e.g., historical record of 
logins to a workstation) 
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Hash Table Implementation 

Ø We can also create a hash-table dictionary 
implementation. 

Ø  If we use separate chaining to handle collisions, then 
each operation can be delegated to a list-based 
dictionary stored at each hash table cell. 
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The getAll and put Algorithms 

Algorithm getAll(k)   

Create an initially-empty list L   

for e: D do    

 if e.getKey() = k  then   

  L.addLast(e)    

return L 

Algorithm put(k,v)    

Create a new entry e = (k,v)  

S.addLast(e)  {S is unordered} 

return e 
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The remove Algorithm 

Algorithm remove(e):    

{ We don’t assume here that e stores its position in S } 

B = S.positions()    

while B.hasNext() do    

 p = B.next()    

 if p.element() = e then   

  S.remove(p)    

  return e    

return null  {there is no entry e in D} 
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Ordered Maps and Dictionaries 
Ø  If keys obey a total order relation, can represent a map or 

dictionary as an ordered search table stored in an array. 

Ø   Can then support a fast find(k) using binary search. 
q  at each step, the number of candidate items is halved 

q  terminates after a logarithmic number of steps 

q  Example: find(7) 

 

1 3 4 5 7 8 9 11 14 16 18 19 

1 3 4 5 7 8 9 11 14 16 18 19 

1 3 4 5 7 8 9 11 14 16 18 19 

1 3 4 5 7 8 9 11 14 16 18 19 

0 

0 

0 

0 

m l h 

m l h 

m l h 

l=m =h 
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Ordered Search Tables 
Ø  Performance: 

q  find takes O(log n) time, using binary search 

q  insert takes O(n) time since in the worst case we have to shift n 
items to make room for the new item 

q  remove takes O(n) time since in the worst case we have to shift n 
items to compact the items after the removal 

Ø  A search table is effective only for dictionaries of small size or 
for dictionaries on which searches are the most common 
operations, while insertions and removals are rarely performed 
(e.g., credit card authorizations) 
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Binary Search:  A Case Study of an Iterative Algorithm 

Ø  The algorithm for binary search that we just described is 
an example of an iterative algorithm (note that we 
could also implement binary search recursively). 

Ø  Loop Invariant:  An assertion about the current 
program state useful for designing, analyzing and 
proving the correctness of iterative algorithms. 

Ø What is an appropriate loop invariant for our binary 
search algorithm? 
q Maintain a sublist. 

q  If the key is contained in the original list, then the key is 
contained in the sublist. 
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Definition of Assertions 

An assertion is not a task for the algorithm to 
perform.  

It is only a comment that is added for the 
benefit of the reader. 
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Specifying a Computational Problem 

Other Examples of Assertions 

Ø Preconditions: Any assumptions that must be 
true about the input instance. 

Ø Postconditions: The statement of what must 
be true when the algorithm/program returns. 



Last Updated:  12-02-28 9:11 AM 
CSE 2011 
Prof. J. Elder - 50 - 50 

Iterative Algorithms 

Take one step at a time 

 towards the final destination 

loop (done) 

       take step 

end loop 
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From the Pre-Conditions on the input instance 
we must establish the loop invariant. 

Establishing Loop Invariant 
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Maintain Loop Invariant 

Ø Suppose that 
q We start in a safe location (pre-condition) 

q  If we are in a safe location, we always step 
to another safe location (loop invariant) 

Ø Can we be assured that the 
computation will always be in a safe 
location? 

Ø   By what principle? 
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Maintain Loop Invariant 
•  By Induction the computation will 
always be in a safe location. 

(0)

, ( )

, ( ) ( 1)

S

i S i

i S i S i

⇒ ⎫
⎪⎪⇒∀ ⇒⎬
⎪
⎪⇒∀ ⇒ + ⎭
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Ending The Algorithm 
Ø  Define Exit Condition 

Ø  Termination: With sufficient progress,  

     the exit condition will be met. 

Ø  When we exit, we know 
q  exit condition is true 

q  loop invariant is true 

    from these we must establish   

    the post conditions. 

Exit 

Exit 

0 km Exit 
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Definition of Correctness 
<PreCond> & <code> è<PostCond>    

 

If the input meets the preconditions,  

then the output must meet the postconditions.  
 

If the input does not meet the preconditions, then 
nothing is required. 
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Define Problem: Binary Search 

Ø PreConditions 
q Key       25 

q Sorted List 

Ø PostConditions 
q Find key in list (if there). 

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95 

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95 



Last Updated:  12-02-28 9:11 AM 
CSE 2011 
Prof. J. Elder - 57 - 

Define Loop Invariant 

Ø Maintain a sublist. 

Ø  If the key is contained in the original list, then the key is 
contained in the sublist. 

 

key 25 

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95 
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Define Step 

Ø Cut sublist in half. 

Ø Determine which half the key would be in. 

Ø Keep that half. 

key 25 

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95 

If key ≤ mid, 
then key is in 
left half. 

If key > mid, 
then key is in 
right half. 

mid 
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Define Step 

Ø  It is faster not to check if the middle element is the key. 

Ø Simply continue. 

key 43 

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95 

If key ≤ mid, 
then key is in 
left half. 

If key > mid, 
then key is in 
right half. 
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Make Progress 

Ø  The size of the list becomes smaller. 

 
3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95 

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95 

79 km 

75 km 
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Exit Condition 

Ø  If the key is contained in the 
original list,  

   then the key is contained in the 
sublist. 

Ø  Sublist contains one element. 

Exit 

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95 

0 km 

•  If the key is 
contained in the 
original list, 

    then the key is at 
this location. 

key 25 
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If key not in original list 

Ø  If the key is contained in the 
original list,  

   then the key is contained in the 
sublist. 

•  Loop invariant true, 
even if the key is not 
in the list. 

•  If the key is contained in 
the original list, then the 
key is at this location. 

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95 

key 24 

•  Conclusion still solves the 
problem. 

     Simply check this one location 
for the key. 
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Running Time  

The sublist is of size n, n/2, n/4, n/8,…,1 
Each step O(1) time. 

Total = O(log n)  

key 25 

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95 

If key ≤ mid, 
then key is in 
left half. 

If key > mid, 
then key is in 
right half. 
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Running Time 

Ø Binary search can interact poorly with the memory 
hierarchy (i.e. caching), because of its random-access 
nature.  

Ø  It is common to abandon binary searching for linear 
searching as soon as the size of the remaining span falls 
below a small value such as 8 or 16 or even more in 
recent computers. 
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<precondition>:  A[1..n] is sorted in non-decreasing order
<postcondition>: If  is in A[1..n], algorithm returns

1,  
 its location

loop-invariant>: If  is 

BinarySea

in 

rch(A[1..n],

whil

)

e 
p q

key

key
q p

e
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k y
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if  [ ]

els
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return( )

return("Key n

A[1..n], then

e

end
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if [ ]

end
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q]
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Simple, right? 

Ø Although the concept is simple, binary search is 
notoriously easy to get wrong. 

Ø Why is this? 
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End of Lecture 

Feb 9, 2012 
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Boundary Conditions 

Ø  The basic idea behind binary search is easy to grasp. 

Ø  It is then easy to write pseudocode that works for a 
‘typical’ case. 

Ø Unfortunately, it is equally easy to write pseudocode that 
fails on the boundary conditions. 
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1

if  [ ]

else

end

q mid

p

key A mid

mid

=

=

≤

+

Boundary Conditions 

1

if  [ ]

else

end

q mid

p

key A mid

mid

=

=

<

+or 

What condition will break the loop invariant? 
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Boundary Conditions 

key 36 

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95 

mid 

sC eod lek cey t A[m rige hid] t  lf: ha≥ →

Bug!! 
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1

if  [ ]

else

end

q mid

p

key A mid

mid

=

=

≤

+

Boundary Conditions 

1

if  [ ]

else

end

q mid

p

key A mid

mid

=

=

<

+

if  < [ ]

else

end

1q mid

p

key A mid

mid

= −

=

OK OK Not OK!! 
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key 25 

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95 

Boundary Conditions 

mid  
2
+⎢ ⎥= ⎢ ⎥⎣ ⎦
p q mid  

2
+⎡ ⎤= ⎢ ⎥⎢ ⎥
p q

or 

Shouldn’t matter, right? Select mid  
2

p q+⎡ ⎤= ⎢ ⎥⎢ ⎥
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6 74 

Boundary Conditions 

key 25 

95 91 88 83 72 60 53 51 49 43 36 25 21 21 18 13 5 3 

If key ≤ mid, 
then key is in 
left half. 

If key > mid, 
then key is in 
right half. 

mid 
Select mid  

2
p q+⎡ ⎤= ⎢ ⎥⎢ ⎥
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25 18 74 

Boundary Conditions 

key 25 

95 91 88 83 72 60 53 51 49 43 36 21 21 13 6 5 3 

If key ≤ mid, 
then key is in 
left half. 

If key > mid, 
then key is in 
right half. 

mid 
Select mid  

2
p q+⎡ ⎤= ⎢ ⎥⎢ ⎥
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25 13 74 

Boundary Conditions 

key 25 

95 91 88 83 72 60 53 51 49 43 36 21 21 18 6 5 3 

If key ≤ mid, 
then key is in 
left half. 

If key > mid, 
then key is in 
right half. 

• Another bug! 

No progress 
toward goal: 

Loops Forever! 

mid 
Select mid  

2
p q+⎡ ⎤= ⎢ ⎥⎢ ⎥
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if  [

mid  

]
2

1
else

end

key A mi

p q

q mid

p mid

d

+⎢ ⎥= ⎢ ⎥⎣ ⎦

= +

≤
=

Boundary Conditions 

if  [

mid  

]
2

1
else

end

key A mi

p q

q mid

p mid

d

+⎡ ⎤= ⎢ ⎥⎢ ⎥

= +

≤
=

if  < [

mid
2

1
]

else

end

key A mid

p q

q mid

p mid

+⎡ ⎤= ⎢ ⎥⎢ ⎥

= −

=

OK OK Not OK!! 
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if  [

mid  

]
2

1
else

end

key A mi

p q

q mid

p mid

d

+⎢ ⎥= ⎢ ⎥⎣ ⎦

= +

≤
=

Getting it Right 

Ø How many 
possible 
algorithms? 

Ø How many 
correct 
algorithms? 

Ø Probability of 
guessing 
correctly? 

midr 
2

o ? p q+⎡ ⎤= ⎢ ⎥⎢ ⎥

if  < [  or ?]key A mid

else
o

end

1r q mid

p mid

= −

=
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BinarySearch(A[1..n],key)
<precondition>:  A[1..n] is sorted in non-decreasing order
<postcondition>: If key  is in A[1..n], algorithm returns its location
p = 1,  q = n
while q ! p

< loop-invariant>: If key  is in A[1..n], then key  is in A[p..q]

mid =
p + q

2

"

#
"
"

$

%
$
$

if key <A[mid]
q = mid & 1

else if key > A[mid]
p = mid + 1

else
return(mid)

end
end
return("Key not in list")

Alternative Algorithm:  Less Efficient but More Clear 

ΘStill (log ), but with slightly larger constant.n
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Moral 

Ø Use the loop invariant method to think about iterative 
algorithms. 

Ø Be careful with your definitions. 

Ø Be sure that the loop invariant is always maintained. 

Ø Be sure progress is always made. 

Ø Having checked the ‘typical’ cases, pay particular 
attention to boundary conditions and the end game. 

Ø Sometimes it is worth paying a little in efficiency for clear, 
correct code. 
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Ø A volunteer, please. 

Card Trick 
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Pick a Card 

Done 
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Loop Invariant: 
The selected card is one 

of  these. 
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Which 

column? 

left 
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Loop Invariant: 
The selected card is one 

of  these. 



Last Updated:  12-02-28 9:11 AM 
CSE 2011 
Prof. J. Elder - 85 - 

Selected column is placed 
in the middle  
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I will rearrange the cards 
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Relax Loop Invariant: 
I will remember the same 

about each column. 
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Which 

column? 

right 
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Loop Invariant: 
The selected card is one 

of  these. 
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Selected column is placed 
in the middle  
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I will rearrange the cards 
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Which 

column? 

left 
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Loop Invariant: 
The selected card is one 

of  these. 
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Selected column is placed 
in the middle  
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Here is your 
card. 

Wow! 
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Ternary Search 

Ø  Loop Invariant:  selected card in central subset of             
cards 

 

 

 

Ø How many iterations are required to guarantee success? 

1Size of subset = / 3

where
total number of cards

iteration index

in

n
i

−⎡ ⎤⎢ ⎥

=
=
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Summary:  Learning Outcomes 
Ø  Maps 

q  ADT 

q  What are they good for? 

q  Naïve implementation – running times 

Ø  Hashing 
q  Running time 

q  Types of hashing 

Ø  Dictionaries 
q  ADT 

q  What are they good for? 

Ø  Ordered Maps & Dictionaries 
q  Iterative Algorithms:  Case Study of Binary Search 

²  Loop Invariants 

²  Boundary Conditions 


